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SUMMIARY

Work carried out on the development of concepts for an automated trajectory generator for
military aircraft is described. The system uses the A* optimisation algorithm to design a
ground track which represents an optimal tradeoff between a short path and a path over low
terrain. This is achieved by minimising a cost function which is user selectable.

This work incorporates path segments consisting of circular arcs, the design of an
appropriate cost function and heuristics, as well as the inclusion of threats. Measures taken
to improve the computational speed of the system are also described. Some examples of
trajectories generated by the system are presented.

DSTO
A U S T R A L I A_

© COMMONWEALTH OF AUSTRALIA 1993

POSTAL ADDRESS: Director, Aeronautical Research Laboratory
506 Lorimer Street, Fishermens Bend
Victoria, 3207, Australia.

[ S . _



Mr

CONTENTS

1. INTRODUCTION 1

2. THE A* ALGORITHM 2
2.1 Standard Algorithm 2
2.2 Inadmissible Heuristics 3
2.3 Algorithmic Modifications 3

3. SYSTEM DESCRIPTION 4
3.1 Circular Path Segments 4
3.2 Cost Function 6
3.3 Heuristics 8
3.4 Specified Threats 10

4. TECHNIQUES USED FOR REDUCING SEARCH SPACE 11
4.1 Use of an Inadmissible Heuristic 11
4.2 Use of Bounded Number of Headings at Each Grid Square 11
4.3 Use of Boxed Search Space 11
4.4 Use of Different Length Moves 12

5. RESULTS 12
5.1 Sample Trajectories 12
5.2 Use of an Inadmissible Heuristic 15
5.3 Use of Bounded Number of Headings at Each Grid Square 16
5.4 Use of Boxed Search Space 16

6. CONCLUSION 17
DTC QUALITY INSPEC'ED

ACKNOWLEDGEMENT 17
Aseoiosto Tor -

REFERENCES I NTIS GRA&I 18

DTIC TAB .0
APPENDIX Uu1nanodomo0 19

JustirloatIO

DISTRIBUTION by

DOCUMENT CONTROL DATA akttttLL ?

+ IItsL

lit 33i~

tA



1. INTRODUCTION

The automated design, in real time, of flight paths for low-flying combat aircraft is of
interest since it allows the potential for improved mission effectiveness without increasing
pilot workload. Automated route planning also allows the possibility of updated flight

paths being generated in response to the receipt of new intelligence concerning the
mission. Such flight paths could be presented on a display or used to drive an autopilot.
Halpern [ 1 ] has surveyed recent work in the area of trajectory generation. As discussed in

that work, an important approach for the trajectory design problem has been to represent
the design problem as a state space search problem and to use an appropriate optimisation
algorithm, commonly dynamic programming or A* (pronounced A-star), to solve this.
This approach has been used in several projects (see [1]). This approach requires
reduction in the size of the search space in order to make the problem computationally
tractable for reasonable flight distances.

To demonstrate the use of a state space search algorithm for terrain avoidance (TA) and to

provide a starting point for future development, Selvestrel and Goss in Air Operations
Division at ARL developed a PC (IBM style personal computer) based visualisation tool
[2] which uses the A* algorithm to generate optimal ground tracks over a patch of terrain

represented by a grid of terrain altitudes from a terrain database. The software was written

in the C programming language.

A ground track produced by the system consisted of connected straight segments, each

oriented at one of sixteen headings. The path minimised a cost function which was a
weighted sum of two components. One component was the total path length and the other

was the sum of the path segment lengths, each weighted by the terrain altitude below the

segment. Minimisation of this cost function encouraged the resultant path to be a trade off
between a short one and a longer one over lower terrain.

This Technical Report describes the development of that tool into a form closer to a
deployable system and is organised as follows. Section 2 contains some background on the
A* algorithm and a description of the modifications that were necessary for this work.
Section 3 describes the system and the development work carried out, including the use of
path segments made of circular arcs, the selection of cost functions and heuristics used to

drive the algorithm, and the implementation of specific threats. Section 4 describes the
methods used to reduce the search space to allow larger problems to be solved in a
reasonably short time. Section 5 contains some sample trajectories and some results
indicating the effectiveness of some of the techniques presented in Section 4.

-1 -
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2. THE A* ALGORITHM

2.1 Standard Algorithm

The standard algorithm is outlined here and presented in algorithmic form in Appendix 1.
Readers are referred to Pearl's book [3].

In its standard form, the algorithm finds the optimal allowable path from a starting node, S,
to a goal, G through a subset of a set of fixed nodes. The goal may consist of more than
one goal node, in which case any of these may be the endpoint of the optimal path. The
path is optimal in that it minimises a cost function supplied by the designer (so that when
this cost function is evaluated over any other allowable path from start to goal, its value
will not be smaller). Here, allowable means that the path formed by the interconnection of
path segments does not violate constraints supplied by the designer for the particular
problem. In this work, the term optimal is used to imply optimal allowable. A concý,ptmally
simple approach to solving such an optimisation problem would be to generate all
allowable paths and then to test them to find which is optimal. The sequence of operation
of the A* algorithm involves generating nodes which may turn out to be on the optimal
path and testing them to see how they compare with the others.

The A* algorithm proceeds by building up paths from starting node S. The nodes on these
paths are stored on two lists, called 'OPEN' and 'CLOSED'. The endpoint of each path is
stored in OPEN. The other nodes on each path are stored in CLOSED. Each node has a
pointer to its predecessor on the path. The pointers point back rather than forwards because
a path may branch. Each node, n, also has a value of a node evaluation function f(n)
associated with it.

This node evaluation function is an estimate of the optimal cost of a path from S to G
through node n. This evaluation function is the sum of two parts:f(n) = g(n) + h(n). The
first part, g(n), is the current lowest cost of a path from the start to node n. The second
part, h(n), is an estimate of the optimal cost from node n to the goal node G. If this
estimate, called a heuristic, is always (that is, for every node n) an underestimate of the
true optimal cost from node n to the goal then the heuristic is said to be admissible, and the
algorithm will find the lowest cost path joining start and goal. An admissible heuristic
which is larger (is a closer underestimate of the true optimal cost from node n to goal) than
another heuristic is said to be better informed than the other one.

At each step of the algorithm, the node n on OPEN, with lowest value off(n) is expanded
(ie has some single new path segments ending at nodes, called its children, emanate fiom
it) so that its children will become path endpoints to be placed on OPEN where their
values off will be subsequently compared with the others. Node n is then placed on

CLOSED since it is no longer a path endpoint.

The algorithm propagates in this way, using the node evaluation function to select the node
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from OPEN to be next expanded. If, at some time, a node generated coincides with a node
already on OPEN or on CLOSED, their node evaluation functions are compared and only
the child with the lower cost is retained. This is done by giving it a pointer to the lowest
cost path back to start. If a node on CLOSED has been updated, it is removed from
CLOSED and placed on OPEN so that is is again an endpoint. Nodes which point back to
this node will then be automatically updated as the algorithm proceeds.

Eventually, there will be a goal node on CLOSED. This signifies that the lowest cost node
on OPEN was at the goal and the algorithm terminates. The optimal path is then found by
backpropagation, that is by following the pointers back from the node at goal all the way
to start.

2.2 Inadmissible Heuristics

A well informed heuristic is desirable because it involves fewer node expansions than a
less well informed heuristic. However, a better informed heuristic is usually more difficult
to calculate than a less well informed one. There is thus a trade-off between time spent
calculating a good heuristic which will result in fewer node expansions and time spent
expanding more nodes and thus manipulating longer lists of nodes if using a simpler less
well informed heuristic.

In many applications, one is prepared to sacrifice a guarantee of optimality for improved

speed of solution. This may be achieved by using an inadmissible heuristic, that is, one
whose values are not always an underestimate of the optimal cost from node n to the goal.
Approaches which use an inadmissible heuristic but guarantee to find a solution with a
cost within a specified tolerance of the optimal solution are given in [3].

The use of a node evaluation function which incorporates information about what is going

on both fore and aft of node n is the principal difference between the A* algorithm and
dynamic programming, which uses information from only one side. For example,
backward dynamic programming calculates costs from node n to goal and uses no
information about what can occur between start and n to guide the search.

2.3 Algorithmic Modifications

As a consequence of the implementation of path segments consisting of circular arcs
described in Section 3.1, it was found necessary in this work to modify the standard
algorithm as follows. Each child generated was tested for coincidence only with a node on
OPEN and not for coincidence with a node on CLOSED as in the standard algorithm. If
coincidence with a node on OPEN was found, only the child with the lower cost was
retained. The reasons for this modification are given in more detail in Section 3.1.
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3. SYSTEM DESCRIPTION

The system was based on that in [21, but was ported to a Commodore AMIGA 3000UX

computer running the AMIGADOS operating system. The terrain map was represented as

a 250 x 250 array of terrain heights, each associated with the altitude of a square area of

terrain called in this work a grid square. The grid square sizes were made variable and the
length of a side was denoted grid size in metres (m). The two sizes mostly used were 100

m and 480 m. Using a grid square of side 100 m gave a terrain patch of 25 km x 25 km.

This was the size used for most of the work described here. A node is defined by its
position in the terrain patch and by the heading of the path segment at that position. The

locations of the start and goal nodes were specified by the user and as the algorithm ran,

those nodes which were being expanded were displayed. This visualisation capability was
useful for developing methods for improving performance since it gave a dynamic
indication of the progress of the algorithm.

3.1 Circular Path Segments

The optimal path consists of segments each of which begins and ends at a node. In [21, the

centre of each grid square defined the (x,y) coordinate of a possible node. Each path
segment thus began and ended at the centre of a grid square. The path segments were

straight lines of fixed length at one of sixteen orientations. Each path segment was able to

branch into three path segments at a node. The headings of the new segments were

selected according to the heading of the previous segment. The three out of the sixteen

possible directions chosen were straight ahead, and the gentlest left and right turn
(approximately 22.5 degrees). These moves were designed to correspond with path

segments having one g lateral acceleration for three seconds of level flight at a speed of
200 metres per second (m/s).

In the work reported here, these straight line segments were replaced by circular arcs with

any orientation allowed and any starting and end points, relative to the grid squares. The
length, I (m), of the segment, the velocity, v (m/s), and lateral acceleration in units of
gravitational acceleration were specified by the user. The lateral acceleration is converted

to m/s2 and denoted alat. The geometry of a left turn segment is as shown in Figure 1.

Note from Figure 1 that y, the change in heading, is also the angle subtended by the arc at

its centre. We have

alat = v 2fr

so
r = v 2alat.

Also, y= 11r

=I alat/ 2 .

A.
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Figure 1. Geometry of a left turn segment.

Displacements. dp (m), in the direction of the incoming heading, and dq (m), orthogonal to

it, may then be found. We have
dp=rsiny

and dq=r(l-cos7).

Note that dp and dq need only be calculated once for each type of segment.

The coordinates at the end of the segment are then given by

x1 =x0+dp cosO-dq sin9

and Y, =Y0+dp sinG+dq cosO.

For a right turn segment,
x1=x 0+dp cosO+dq sinG

and Y, =y0+dp sin9-dq cosO.

Node positioi s and headings calculated using these formulae are continuous variables and

the likelihood of two partial paths ending at the same point is very small. This means that

coincidence with nodes already calculated will rarely occur. In order to reduce the number

of nodes used in the search, node positions were quantised to the cont";,ing grid square

and headings were quantised to one of sixteen equal arcs of a circle. These quantised
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values were then used for testing for coincidence with a node on OPEN as described in

Section 2. Note that the real values of position and heading and not the quantised values
were used to calculate the path segments. This enables a smooth path to be calculated

while discarding some unnecessary nodes.

The standard A* algorithm as described in Section 2.1 involves testing nodes for

coincidence on CLOSED as well as on OPEN. Testing for coincidence with a node on

CLOSED is inappropriate for this work since it is possible for a node n on CLOSED to
have successors which would not be updated if node n were replaced by a node with
identical quantised heading and position. This is because two nodes with identical

quantised heading and position could be sufficiendy different that their successors are not
equivalent when quantised. If this occurred, the successors of a node replaced on CLOSED
would still point back to the old node so that the program could crash. The problem does

not occur with nodes on OPEN since they are path endpoints. A consequence of the lack of

checking for coincidence on CLOSED is an increased number of nodes on CLOSED, but

our experience has been that this does not greatly slow down the algorithm.

The grouping of similar (heading, position) points and considering them as equivalent
must mean that some of the results which apply for a 'pure' A* implementation are
weakened for this work. Nonetheless, the approximation seems to be a reasonable one

and, from examinations of the trajectories produced, the approach seems to work well.

Moves were specified as having one out of five possible directions. From left to right,
these were hard left, soft left, straight, soft right and hard right. At each node, the three
possible moves were the same again and one to the left and right For example, if the
incoming move to a node was soft left, then the three possible outgoing moves were soft
left, hard left and straight.

3.2 Cost Function

The trajectory design has been formulated in an optimisation framework and the cost

function is selected by the designer to obtain the type of solution required. This approach
is well established in engineering design. For example, in many optimal control system

design approaches, the designer uses selections of cost function to 'drive' the design. Such
a framework is typically used to allow the designer to trade off various design criteria in a

systematic manner.

In this work, we are interested in minimising risk to the mission from exposure to threats.
It is known, e.g. [4], that in the absence of specific threat information, low flight over low
ground is a sensible policy. In 141, in the generation of a three dimensional path, Asseo
has penalised the square of the aircraft altitude above sea-level in order to to minimise the
square of the expected kill probability in a region inhabited by uniformly distributed

surface to air missile sites whose exact locations are unknown. This indicates a need for
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the cost fu,,•tion to contain a term which penalises flight over high ground.

However, to avoid excessively long paths, it may be necessary to penalise path length. A
way of incorporating these often conflicting requirements into the path design is to choose
the cost function to be a linear combination of path length and path length weighted by
terrain altitude below the path. This encourages the path to be short and over low terrain.
The cost function, J, to be minimised, may be written as

J =Jd+J +J. 1
d e 1 t

Here, Jd penalises path length and is of the form

J d =k d lIs (2)

where kd is a positive weighting chosen to select the importance of path length and I1 is the
length of the ith path segment. The summation is over the path from start to goal.

Also, .1e penalises path sections over high altitude terrain and has the form

kJ e= e• E l(e-ereý (3)

where
k is a positive weighting chosen by the designer to reflect the importance

of a path over low ground (the division by 75 allows convenient values
for k for the terrain used in this work),e

e. is the average terrain altitude under the i'th path segment and is obtained
by sampling terrain altitudes at a specified number of points under the
segment, and

e ef is a reference altitude whose function is to reduce the effect of path
length on J.

e

The selection of eref is problematic. The value used for eref was the altitude of the lowest

terrain grid square in the search area.

The threat component, Jr of the cost, penaliscs path sections near specified threat locations
and is described in Section 4.4.

Equations (2) and (3) have the feature that if the segment lengths or the number of points
under a segment used to calculate e. are changed, it is not necessary to readjust the values
of kd and ke to maintain the trade-off between path length and path over low terrain.

| ii e
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3.3 Heuristics

If the standard A* algorithm is used and if the heuristic is admissible, then the form of the
heuristic will affect the speed at which the algorithm runs to completion but will not affect
the final result. This guarantee of optimality with an admissible heuristic is not of great
importance for many practical problems since a solution path close to the optimal one will
often be adequate. Nonetheless, initially we examine the design of some admissible
heuristics.

It is natural to decompose the heuristic into components which correspond with those of

the cost function, J. That is, we decompose h(n) as

h(n) = hd(n) + he(n),

where had(n) is the heuristic for the distance component and he(n) is the heuristic for the
elevation component. A heuristic h (n) for the specified threats could be constructed along
the same lines as h (n) since threats were modelled as areas of high terrain (see Sectione

4.4).

For J d, a simple heuristic is

hd(n) = pd kd Ins

where

,u is a positive scaling factor with value less than or equal to 1.0 for an
admissible heuristic or a larger value for an inadmissible one,
kd is as used to calculate Jd in eqn(2), and
lnG is the Euclidean distance from node n to the goal.

A more sophisticated heuristic might replace IGn with the shortest possible path length
from node to goal, taking into account the heading at the node, the required heading at

goal, and any 'no-go' areas while respecting turn rate limits.

The design of a well informed h is more difficult. One may initially be tempted toe

consider the elevation cost of the shortest path from node to goal, but a heuristic based on
such a path may not be admissible if the optimal path is longer and over lower terrain.

One method for obtaining an admissible elevation cost heuristic involves dividing the map
into regions, ri, where i = 1, 2, ... , as illustrated in Figure 2, and summing an

underestimate of the elevation cost to traverse each region. With this approach, the
regions must be chosen in such a way that they are all traversed at least once by any path

from the start to goal. The regions will then also have the property that given the position
of any node n, a set of regions which must be crossed by any path from node n to the goal
may be determined. Suitable regions could be bounded by concentric circles or squares

surrounding the goal or the start. It is bettcr to choose a set of regions surrounding the

I. -
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Terrain Map

grid-size

: ' : ' :n:. : : :r : : |
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S. . . . . . .. . ... ...

/g r

Figure 2. Illustration of terrain map decomposition into regions for
calculation of elevation heuristic, h (n).

goal because we wish to calculate heuristics for paths to the goal. The regions are
numbered so that region ri.| surrounds region r. with rI being the smallest region
surrounding the goal.

If the minimum elevation cost to traverse region r. is called (., then an admissible£ £

(provided positive scale factoru e <1.0) elevation heuristic for every node n in region r. is
given by e

j-|

h (n:nE r)=, °i

The use of regions bounded by concentric squares based on the terrain grid squares is
illustrated in Figure 2. This arrangement allowed the xis to be calculated simply.
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With the map decomposition shown in Figure 2, o.i is given by, from eqn (3)

k
I L grid-size (einJ) - ereý
75

where ei(j) is the minimum terrain altitude in region r., and k and en, are as in eqn (3).

At large distances from the goal, the regions are not only large but consist of grid squares

which are far from each other so their (the regions') contribution to the heuristic is likely

to be a low underestimate since the value of emin(j) could depend on a low altitude grid

square far from the optimal path. To reduce this effect, an alternative arrangement
involving squares emanating from each node, n, as well as from the goal was considered.

The idea here was that the heuristic would be better informed if based on regions bounded

by smaller squares than shown in Figure 2. This scheme was implemented but was
discarded since it involved a great deal more computation and gave very little reduction in

the number of nodes expanded.

3.4 Specified Threats

Specified threats were treated as areas of high ground with their own penalty weighting

distinct from that used to penalise path length over high ground. Regions under the
influence of specified threats were represented by two concentric circles as shown in
Figure 3. The equivalent terrain altitudes were specified by the user in the two regions,

one inside the inner circle (the kill region) and the other between the two circles
(acquisition region). This allowed the user to apply a more severe penalty to a path over

the inner region of the threat.

Terrain Map

Acquisition region

Kill region

Figure 3. Plan view of area of influence of a specified threat.
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4. TECHNIQUES USED FOR REDUCING SEARCH SPACE

As indicated previously, it is necessary to prune the search space in order to solve large
problems in a reasonably short time. The visualisation tool [2] proved useful in
highlighting situations where the algorithm was spending time unproductively. As
indicated in Section 3, the A* algorithm proceeds by generating nodes which may turn out
to be on the optimal path and then testing them. Reducing the search space involves
reducing the number of nodes generated.

4.1 Use of an Inadmissible Heuristic

Pearl [3] indicates that in many problems, the A* algorithm spends much time
discriminating between solutions which appear to be almost equally good. This appears to
be exacerbated if a poorly informed heuristic is used. Making the heuristic larger leads to a
solution being obtained more quickly, but if the heuristic is not admissible, the guarantee
of optimality is lost. In this work, the elevation heuristic, h , incorporates a scaling factor,

/4e, and the distance heuristic has a scaling factor Pd. These each have nominal value 1.0
and can be increased to obtain an inadmissible heuristic. The performance improvement
available is discussed in Section 5.

4.2 Use of Bounded Number of Headings at Each Grid Square

A method for restricting the number of nodes generated is to discard nodes according to
the number of quantised headings present in a grid square. Limiting the number of
allowable quantised headings at each grid square to the first one or two chosen by the
algorithm gave considerable improvement in run times with usually no degradation of path
since the heading at a point on the optimal path often resulted from the first child there.

4.3 Use of Boxed Search Space

An obvious method for pruning the search space is to specify a region outside which the
algorithm may not explore. A simple region is a rectangular corridor surrounding the
straight line path of length, 1, from start to goal. A guide to the width of the corridor was
obtained by considering the relationship between the width, w, of the corridor and the
length, 1(1 +A), of a simple path which touched the edge of the corridor midway between
start and goal as shown in Figure 4.

From Figure 4, using Pythagoras, one readily obtains w = 1 [A (2 + A)]

This was used in conjunction with a bound on the allowable heading deviation from a
straight line joining start and goal.
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s1/2 G

Figure 4. Illustration of search space reducing corridor

based on a simple path of length I(I+A).

The performance improvement obtained by this technique is discussed in Section 5.

4.4 Use of Different Length Moves

The use of long moves in non-critical areas, that is away from the start, goal and threats,

allowed improvements in run time without significant degradation of the solution. It was

found necessary to make the long moves have large turn radii in order to avoid making
large changes in direction. This process resulted in reduced manoeuvrability where the

moves were long. The short moves were made to correspond with larger lateral
accelerations.

The use of different length moves allows the possibility of randomly inserted short moves.

This may be useful for designing routes less predictable by an enemy.

5. RESULTS

5.1 Sample Trajectories

This Section contains three sample trajectories, shown in Figures 5, 6 and 7. The same

25 km x 25 km patch of terrain was used for each of these. Some of the parameters used to

generate all three paths are listed below.
(1) The three paths are each designed for a velocity of 200 ni/s.

(2) The longer path segments have a length of 1200 m with hard left and hard right lateral
accelerations of 2.0 g and soft left and soft right accelerations of 1.0 g.

(3) The shorter segments have a length of 600 m and hard and soft accelerations of 3.0 g

and 1.7 g respectively.
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Figure 5. A trajectory with k e=kd =1.0. Terrain altitude (metres above sea level)

indicated upper right.

Figure 6. A trajectory with k =1.0 and kd=10.0.



14

Figure 7. A trajectory with two threats modelled as 'no-go' areas (ke=kd=l.0).

In Figure 5, the trade-off between total path length and path over low terrain was achieved
using kd = ke = 1.0. For this problem this results in a path which follows low terrain.

Figure 6 shows the trajectory produced with kd = 10.0. This larger value of kd increases the
penalty associated with total path length and so causes the path to be shorter than in Figure
5.

Figure 7 shows the trajectory produced using kd = k = 1.0 for a scenario with two threats
modelled as 'no go' areas.

For all the runs described in this work, the number of nodes with different quantised
headings in a grid square was limited to one, unless stated otherwise.

The trajectories generated have a length of order 20 kin, which, at a speed of 200 m/s,
represents a flight time of 100 seconds. Calculation times considerably less than this are
achievable with the use of slightly inadmissible heuristics.

If longer trajectories are required, waypoints may be introduced to subdivide the problem
and the path may be designed by separately calculating each section between adjacent
waypoints. In this way, the required computing time increases linearly with total trajectory
length, rather than exponentially as would be the case if the large problem were solved in
one section.
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At this time, the price of computing hardware is still falling and faster computers are
becoming more readily available. This helps to indicate that the system described in this
work has potential real time application.

5.2 Use of an Inadmissible Heuristic

Table 1 shows the effect of using an inadmissible heuristic on the performance of a run
like that in Figure 5. The Table shows clearly how the total number of nodes falls when the
heuristic is made inadmissible through the use of pd>1.0 or pe>l.0. The cost tends to
increase when these scaling factors are increased. In a pure A* framework, one would not
find a case where an inadmissible heuristic would give a lower cost than an admissible
one. This type of behaviour can, however, occur in the work described here due to various
deviations, described in this document, of the implementation from standard A*. The
tabulated run times do not include the time needed to calculate the value of the heuristic
for each grid square. This took approximately 8.0 seconds for the 250 x 250 grid square
maps used.

Table 2 shows the effect of scaling up the heuristic for a problem like that in Figure 6.

-td / te total nodes J run time (s)

1.0 1.0 26839 42676.7 325.0
1.0 1.5 16182 42595.3 131.9

1.0 2.0 5843 43062.0 26.9

1.0 2.5 4947 43396.7 21.2

1.05 1.5 10069 42595.3 57.5

1.1 1.5 4527 42276.7 18.8

Table 1. Effect of inadmissible heuristic on the performance of a run
like that in Figure 5.

,ud 11e total nodes i run time (s)
1.0 1.0 12096 293528.7 85.2

1.0 1.5 11681 294402.7 79.6

1.0 2.0 10503 294540.0 67.8

1.0 2.5 8876 294540.0 52.4

1.05 1.5 6919 294786.0 36.0
1.1 1.5 3490 294948.0 14.2

Table 2. Effect of inadmissible heuristic on the performance of a run
like that in Figure 6.
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Here, the effect of increasing u is less than in Table 1 since the elevation component is a
smaller part of the cost.

The differences in trajectory were small for small changes in cost and a reasonable choice
of/I andud for both of these runs is.e=l.5 and /.d=l.05.

5.3 Use of Bounded Number of Headings at Each Grid Square

Table 3 shows the effect of increasing the allowed number of headings at each grid square
for a run like that in Figure 5 with u.e1=.5 and ,Ld=l.05. The total number of nodes and run
time are considerably worse for only a small reduction in cost with a bound of three
headings per grid square.

max headings total nodes J run time (s)

per grid square

1 10069 42595.3 57.5

2 19378 42756.0 176.8

3 27375 42346.0 325.9

Table 3. Effect of bounding number of headings at each grid square.

A heading deviation
bound deg) total nodes J run time (s)bound (deg)

10.1 180 16182 42595.3 131.9

10.1 60 10883 42644.0 67.3

0.2 180 14828 42595.3 111.2

0.2 60 11231 42644.0 70.2

0.1 180 17927 52596.0 122.4

0.1 60 14483 53531.3 89.7

Table 4. Effect of corridored search space and bounded heading deviation on

the performance of a run like that in Figure 5.

5.4 Use of Boxed Search Space

The effect of a boxed search space and bounded heading deviation on a run like that in
Figure 5 is shown in Table 4. For this problem, the approach is not very effective in
improving performance when compared with scaling up the heuristic. When a small
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bounding corridor was used, the algorithm generated many nodes with with large heading
deviations. This tendency was reduced by bounding the heading deviation. Nonetheless, it
seems a good idea to incorporate both kinds of bounds on the search space in a fairly
unrestrictive manner.

6. CONCLUSION

This Technical Report describes work carried out on the development of concepts for an
automated optimal trajectory generator based on the A* algorithm, which is a search based
algorithm for finding an optimal path through a state space. Here the algorithm is applied
to the generation of ground tracks for military aircraft in a terrain avoidance role.

The general aim of the development was to bring the concept demonstration work reported
in [2] to a form closer to a deployable system. This involved enhancing the flexibility and
reducing the execution times of the algorithms to enable the design of long trajectories in a
reasonable time. In particular, the development work included the incorporation of path
segments consisting of circular arcs and the design of appropriate cost functions and
heuristics. Other measures taken to improve the speed of the system were also described
and evaluated. Some examples of ground tracks generated by the system are presented.

Worthwhile improvements in the time to design paths were obtained by scaling up the
heuristic, which guides the search. Only minor deterioration of the path resulted. Methods
involving the use of a corridor to bound the search space were found to be less effective in
improving the performance of the path generator.

Consideration of the computational resources used in this work and methods for designing
longer trajectories suggests the potential real time application of a system like the one

developed here.
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APPENDIX

The A* Algorithm ([3], page 64)

1. Put the start node S on OPEN.

2. If OPEN is empty, exit with failure.

3. Remove from OPEN and place on CLOSED a node n for whichfis minimum.

4. If n is a goal node, exit successfully with the solution obtained by tracing back the pointers
from n to S.

5. Otherwise expand n, generating all its successors, and attach to them pointers back to n. For
every successor n' of n:

a. If n' is not already on OPEN or CLOSED,
estimate h(n')

(an estimate of the cost of the best path from node n' to some goal node),
and calculatef(n')=g(n')+h(n')

where g(n')=g(n)+c(n,n') and g(S)--O.

b. If n' is already on OPEN or CLOSED, direct its pointers along the path yielding the

lowest g(n').

c. If n' required pointer adjustment and was found on CLOSED, reopen it.

6. Go to step 2.

In step 5a, c(n,n') is the cost to travel from node n to node n'.

For the work reported here, step 5 of the standard algorithm was replaced by the following.

5. Otherwise expand n, generating all its successors, and attach to them pointers back to n. For
every successor n' of n:

a. If n' is not already on OPEN,
estimate h(n')

(an estimate of the cost of the best path from node n' to some goal node),
and calculate f(n')=g(n')+h(n')

where g(n')=g(n)+c(n,n') and g(S)=O.

b. If n' is already on OPEN, direct its pointers along the path yielding the lowest g(n').

c. Do nothing here.
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